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Abstract An analysis of primary, superharmonic of order five, and subharmonic of order one-

three resonances for non-linear s.d.o.f. system with two distinct time-delays under an external exci-

tation is investigated. The method of multiple scales is used to determine two first order ordinary

differential equations which describe the modulation of the amplitudes and the phases. Steady-state

solutions and their stabilities in each resonance are studied. Numerical results are obtained by using

the Software of Mathematica, which presented in a group of figures. The effect of the feedback

gains and time-delays on the non-linear response of the system is discussed and it is found that:

an appropriate feedback can enhance the control performance. A suitable choice of the feedback

gains and time-delays can enlarge the critical force amplitude, and reduce the peak amplitude of

the response (or peak amplitude of the free oscillation term) for the case of primary resonance

(superharmonic resonance). Furthermore, a proper feedback can eliminate saddle-node bifurcation,

thereby eliminating jump and hysteresis phenomena taking place in the corresponding uncontrolled

system. For subharmonic resonance, an adequate feedback can reduce the regions of subharmonic

resonance response.
ª 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University.
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1. Introduction

It is well known that changes in stability of response, undesir-

able bifurcations, high-amplitude vibrations, quasiperiodic
motion, and chaotic behavior may occur and cause degrada-
tion or catastrophic failure of engineering structures, for exam-

ple, buildings, bridges, and airplanes subjected to vibrations
caused by wind, rotating engines, and cars, or other environ-
mental disturbances. The task of suppressing the dangerous
vibrations is very important for engineering science, and bifur-

cation control theory has received a great deal of attention in
the last years and various papers have been dedicated to the
control of resonantly forced systems in various engineering

fields (Chen et al., 2000).
Time-delays, which are especially prevalent if a digital con-

trol system is being implemented, can limit the performance of

the feedback controllers in practical mechanical or structural
systems. In many cases, unavoidable time delays in controllers
and actuators give rise to complicated dynamics and can pro-

duce instability of the controlled systems. On the other hand,
the time-delays can deliberately be implemented to achieve
better system behavior when control is applied with the time-
delays (Aernouts et al., 2000). The effect of the feedback gains

and time-delays on the dynamical behavior of the controlled
system is thus required to be investigated for the design of opti-
mal controllers. The non-linear system with the time-delays

has been an active topic of research over the past decades
(Atay, 1998; Plaut and Hsieh, 1987a,b; Moiola et al., 1996;
Hy and Zh, 2000; Hu et al., 1998; Xu and Chung, 2003; Li

et al., 2006).
Atay (1998) studied the effect of delayed position feedback

on the response of a van der Pol oscillator. Plaut and Hsieh
(1987a) numerically analyzed the steady response of a non-

linear one-degree-of-freedom mechanism with the time-delays
for various sets of parameters, by a Runge–Kutta numerical
integration procedure. It was found that the response might

be periodic, chaotic or unbounded. By the method of multiple
scales, the same authors Plaut and Hsieh (1987b) studied
the effect of a damping time-delay on non-linear structural

vibrations and analyzed six resonance conditions. They gave
the results in a number of figures for the steady state response
amplitude versus the excitation frequency and amplitude.

Moiola et al. (1996) considered Hopf bifurcations in nonlinear
feedback systems with time delay by using the frequency-
domain approach. Two simple examples of non-linear autono-
mous delayed systems were presented. The computation of the

two periodic branches near a degenerate Hopf bifurcation
point was given. Hy and Zh (2000) considered controlled
mechanical systems with time delays and, in particular, pri-

mary resonance and subharmonic resonance of a harmonically
forced Duffing oscillator with time delay (stabilization of
periodic motion and applications to active chassis of ground

vehicles were discussed). Hu et al. (1998) considered primary
resonance and 1/3 sub-harmonic resonance of a forced Duffing
Please cite this article in press as: Elnaggar, A.M., Khalil, K.M. The respon
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oscillator with time-delay state feedback. Using the multiple
scales method, they demonstrated that appropriate choices of
the feedback gains and the time delay are possible for better

vibration control. Xu and Chung (2003) discussed a Duf-
fing–van der Pol oscillator with time-delayed position feedback
and found two routes to chaos (period-doubling bifurcation

and torus breaking). Li et al. (2006) considered the response
of a Duffing–van der Pol oscillator under delayed feedback
control and found that unwanted multiple solutions can be

prevented. It is also shown that coupled nonlinear state feed-
back control can be replaced by uncoupled nonlinear state
feedback control. Maccari (2008) investigated the periodic

solutions for parametrically excited system under state feed-
back control with a time delay. Using the asymptotic perturba-
tion method, two slow-flow equations for the amplitude and
phase of the parametric resonance response are derived. It is

demonstrated that, if the vibration control terms are added,
stable periodic solutions with arbitrarily chosen amplitude
and phase can be accomplished. Therefore, an effective vibra-

tion control is possible if appropriate time delay and feedback
gains are chosen. In recent work, a new time-delayed feedback
control method for nonlinear oscillators has been proposed.

The method has been used to suppress high-amplitude re-
sponse and two-period quasiperiodic motion of a parametri-
cally or externally excited van der Pol oscillator (Maccari,
2001, 2005). In particular, it has been shown that vibration

control and quasiperiodic motion suppression are possible
for appropriate choices of time delay and feedback gains.
The method has also been applied to the primary resonance

of a cantilever beam (Maccari, 2003) and to direct and para-
metric excitation of a nonlinear cantilever beam of varying ori-
entation (Yaman, 2009). El-Gohary and El-Ganaini (2012)

considered how to control the dynamic system behavior repre-
sented by a beam at simultaneous primary and sub-harmonic
resonance condition, where the system damage is probable.

Control is conducted via time delay absorber to suppress cha-
otic vibrations. A comprehensive investigation of the effect of
the time delay on the control of a beam when subjected to mul-
ti-parametric excitation forces is presented.

The main objective in this paper is to study the non-linear
dynamical behavior of a harmonically excited non-linear sin-
gle-degree-of-freedom (s.d.o.f.) system and its control by the

appropriate choice of feedback gains and two distinct time-de-
lays under primary, super-harmonic of order five and sub-har-
monic resonance of order 1/3. Two time-delays are proposed

in the proportional and derivative feedback. The governing
equation of motion is assumed in the following form:

€xþ x2
0xþ eð2l _xþ a1x

2 þ a2x
3 þ a3x

4 þ a4x
5Þ

¼ K cosðXtÞ þ uðx; _xÞ ð1Þ

where,

uðx; _xÞ ¼ 2e½dmxðt� s1Þ þ dn _xðt� s2Þ�:
se of nonlinear controlled system under an external excitation via time
nces (2014), http://dx.doi.org/10.1016/j.jksues.2014.01.003

http://dx.doi.org/10.1016/j.jksues.2014.01.003


The response of nonlinear controlled system under an external excitation via time delay state feedback 3
The dot denotes differentiation with respect to time. This sys-

tem is related to the simplest model for many practical con-
trolled systems, such as active vehicle suspension systems
when the non-linearity in the tires is taken into account (Pal-

kovics and Venhovens, 1992). In Eq. (1), we confine the study
to the case of small damping, weak non-linearity and small
feedback gains and all of the same order. In the remainder
of this paper, the method of multiple scales (Elnaggar et al.,

2011) is applied to Eq. (1) and three resonance conditions
are examined. Attention here is focused on the effect of the
time-delays and feedback gains on the steady-state response.

It is believed that the result will be of value in the design of
optimal controllers for this general non-linear s.d.o.f. system.

2. System analysis

2.1. Primary resonance

In this section, we examine the case of primary resonance where
the excitation amplitude and frequency are introduced as

K ¼ 2ef; x ¼ xþ er: ð2Þ

where r is detuning parameter. Using the method of multiple
scales (Elnaggar et al., 2011), one assumes an approximate
solution of Eq. (1) in the form

xðt; eÞ ¼ x0ðT0;T1Þ þ ex1ðT0;T1Þ þ :::::::::; ð3Þ

where Tn ¼ ent; n ¼ 0; 1; 2; :::::: Substituting Eq. (3) into Eq.
(1) and equating the coefficients of like powers, one has the fol-
lowing equations to order O(1) and to order O(e):

Oð1Þ : D2
0x0 þ x2

0x0 ¼ 0;

OðeÞ : D2
0x1 þ x2

0x1 ¼ �2D0D1x0 � 2lD0x0 � a1x
2
0

� a2x
3
0 � a3x

4
0 � a4x

5
0 þ 2f cosðxtÞ

þ 2e½dmxðt� s1Þ þ dn _xðt� s2Þ�:

ð4Þ

where Dn ¼ @=@Tn. Solving the first equation in (4) for

x0ðT0;T1Þ, we have

x0ðT0;T1Þ ¼ AðT1Þeix0T0 þ AðT1Þe�ix0T0 ð5Þ

where A(T1) is a complex-valued quantity that will be deter-
mined by imposing the solvability condition. Substituting

Eq. (5) into the second equation of (4) and eliminating the sec-
ular terms, one obtains

� 2ix0A
0 � 2ilx0A� 3a2A

2 �A� 10a4A
3 �A2 þ 2dmAe

�ix0s1

þ 2idnx0Ae
�ix0s2 þ fe�ie rT0 ¼ 0 ð6Þ

A first order approximate solution of Eq. (1) can be written as

x ¼ a cosðXt� cÞ þOðeÞ: ð7Þ

where c = rT1 � b(T1). The amplitude a and phase c of the
response are governed by the following polar form of modula-
tion equations:

a0 ¼ � lþ dm
x0

sinðx0s1Þ � dn cosðx0s2Þ
� �

aþ f

x0

sinðcÞ;

ac0 ¼ rþ dm
x0

cosðx0s1Þ þ dn sinðx0s2Þ
� �

a� 3a2

8x0

a3 � 5a4

16x0

a5

þ f

x0

cosðcÞ: ð8Þ
Please cite this article in press as: Elnaggar, A.M., Khalil, K.M. The respon
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where a prime indicates the derivative with respect to the time

scale T1. Obviously, the presence of the feedback gains and
time-delays modifies the averaged equations by adding two
terms that are relevant to feedback control. Thus, it is possible

to achieve the desirable behavior if the feedback is deliberately
implemented.

From Eq. (8), we have a set of algebraic equations for
amplitude a and phase c of the steady-state solutions of Eq.

(1) for the primary resonance which can be obtained by setting
a0 = c0 = 0. That is,

� lþ dm
x0

sinðx0s1Þ � dn cosðx0s2Þ
� �

aþ f

x0

sinðcÞ

¼ 0; rþ dm
x0

cosðx0s1Þ þ dn sinðx0s2Þ
� �

a� 3a2

8x0

a3

� 5a4

16x0

a5 þ f

x0

cosðcÞ ¼ 0: ð9Þ

From the system (9), whereby we derive the frequency–
response relation (bifurcation equation) between a and r:

l2
0 þ r0 �

3a2

8x0

a2 � 5a4

16x0

a4
� �2

" #
a2 ¼ f

x0

� �2

; ð10Þ

where

l0 ¼ lþ dm
x0

sinðx0s1Þ � dn cosðx0s2Þ;

r0 ¼ rþ dm
x0

cosðx0s1Þ þ dn sinðx0s2Þ

The amplitude of the response a is a function of the external
detuning r, feedback gains, Time-delays and the amplitude

of the excitation f. The peak amplitude ap of the primary
resonance response, obtained from Eq. (10), is given by

ap ¼
f

x0l0

: ð11Þ

The real solution a of Eq. (10) determines the primary reso-
nance response amplitude. There can be either one or three real
solutions. Three real solutions exist between two points of ver-

tical tangents (saddle-node bifurcation) (Nayfeh and Mook,
1979; Nayfeh and Balachandran, 1995), which are determined
by differentiation of Eq. (10) implicitly with respect to a2. This

leads to the condition

r2
0 �

3a2

2x0

a2 þ 15a4

8x0

a4
� �

r0 þ
27a2

2

64x2
0

a4 þ 15a2a4

16x2
0

a6

þ 125a2
4

256x2
0

a8 þ l2
0 ¼ 0 ð12Þ

with solutions

r�0 ¼
3a2

4x0

a2 þ 15a4

16x0

a4
� �

� 3a2

8x0

a2 þ 5a4

8x2
0

a4
� �2

� l2
0

" #1=2
ð13Þ

For 3a2
8x0

a2 þ 5a4
8x2

0

a4
� �

� l0, there exists an interval

r�0 � r0 � rþ0 in which three real and positive solutions a of

Eq. (10) exist. In the limit 3a2
8x0

a2 þ 5a4
8x2

0

a4
� �

! l0, this interval

shrinks to the point r0 ¼ 3a2
4x0

a2 þ 15a4
16x0

a4: The critical force

amplitude obtained from Eq. (10) is
se of nonlinear controlled system under an external excitation via time
nces (2014), http://dx.doi.org/10.1016/j.jksues.2014.01.003
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fcrit ¼ l0x0 �
6a2

10a4

þ 36a2
2

100a4

þ 32x0l0

5a4

� �1=2
" #1=2

ð14Þ

For f p fcrit there is only one solution while for f fcrit there

are three. The stability of the solutions is determined by the
eigenvalues of the corresponding Jacobian matrix of Eq. (8).
The corresponding eigenvalues are the roots of

k2 þ 2l0kþ C ¼ 0: ð15Þ

where

C ¼ l2
0 þ r2

0 þ
27a2

2

64x2
0

a4 þ 15a2a4

16x2
0

a6 þ 125a2
4

256x2
0

a8 � 3a2r0

2x0

a2

� 15a4r0

8x0

a4

From Eq. (15), it is found that the sum of the two eigenvalues
is �2l0 but for the uncontrolled system, the sum of the two
eigenvalues is �2l, which is negative (Nayfeh and Mook,

1979; Nayfeh and Balachandran, 1995). The addition of the
feedback gains and time-delays modifies the sum of the two
eigenvalues. Then we have three cases such as l0 0.0,
l0 = 0.0 and l0 p 0.0 that may occur depending on the values

of the feedback gains and time-delays. If the feedback gains
and time-delays are chosen in such a way that the sum of the
two eigenvalues is positive (l0 p 0.0), at least one of the two

eigenvalues will always have a positive real part. The system
will be unstable. The selection of the feedback gains and
time-delays is not possible. On the other hand, if the sum of

the two eigenvalues is zero (l0 = 0.0) by a certain value of
the feedback gains and time-delays, a pair of purely imaginary
eigenvalues and hence a Hopf bifurcation (i.e. when l0 = 0.0

and C 0 are satisfied together) may occur. Therefore, the
above two cases should be avoided from the viewpoint of
bifurcation control. The feedback should be implemented at
least in such a way that l0 0.0 is satisfied. Under such feed-

back gains and time-delays, the sum of the two eigenvalues
is always negative, and accordingly, at least one of the two
eigenvalues will always have a negative real part. The other

eigenvalue is zero when C = 0, where a saddle-node bifurca-
tion occurs.

It has been shown that the feedback gains and time-delays

can change the quantities of l0 and r0, which govern the crit-
ical force amplitude, the peak amplitude of the primary reso-
nance response and the stability of steady state motions. The
peak amplitude of the response ap is inversely proportional

to l0. Thus, the peak amplitude of the response ap decreases
(or increases) as l0 increases (or decreases). On the other hand,
if the resulting l0 and r0 maintain the inequality C 0, there is

no unstable solution. The system will not exhibit jump and
hysteresis phenomenon. Thus, the appropriate feedback gains
and time-delays can improve the control performance.
2.2. Super-harmonic resonance

To analyze the super-harmonic resonance, the amplitude and

frequency of excitation are expressed as

K ¼ 2f; 5X ¼ xþ er: ð16Þ

Using the method of multiple scales, one obtains the first order
approximation for the super-harmonic resonance response
Please cite this article in press as: Elnaggar, A.M., Khalil, K.M. The respon
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x ¼ a cosð5Xt� cÞ þ 2fðx2
0 � X2Þ�1 cosðXtÞ þ oðeÞ; ð17Þ

where c = rT1 � b(T1). The amplitude a and phase c of the

free oscillation term are governed by

a0 ¼ �l0a�
a4K

5

x0

sinðcÞ;

ac0 ¼ r0 �
3a2K

2

x0

� 15a4K
4

x0

� �
a� 3a2

8x0

a3 � 15a4K
2

2x0

a3

� 5a4

16x0

a5 � a4K
5

x0

cosðcÞ: ð18Þ

where K ¼ fðx2
0 � X2Þ�1:

The fixed points of this system are given by

�l0a�
a4K

5

x0

sinðcÞ ¼ 0; r0 �
3a2K

2

x0

� 15a4K
4

x0

� �
a

� 3a2

8x0

þ 15a4K
2

2x0

� �
a3 � 5a4

16x0

a5

� a4K
5

x0

cosðcÞ ¼ 0: ð19Þ

Squaring and adding these equations, one has the frequency–
response equation

l2
0þ r0�

3a2K
2

x0

�15a4K
4

x0

� 3a2

8x0

þ15a4K
2

2x0

� �
a2� 5a4

16x0

a4
� �2

" #
a2 ¼ a2

4K
10

x2
0

:

ð20Þ

The real solution a of Eq. (20) determines the superharmonic
resonance response amplitude. There can be either one or three

real solutions. Three real solutions exist between two points of
vertical tangents (Saddle-node bifurcation), which are deter-
mined by differentiation of Eq. (20) with respect to a2. This

leads to the condition

r�0 ¼ Z� 3a2

8x0

a2 þ 5a4

8x0

a4 þ 15a4K
2

2x0

a2
� �2

� l2
0

" #1=2
ð21Þ

where

Z ¼ 3a2

4x0

a2 þ 3a2K
2

x0

þ 15a4

16x0

a4 þ 15a4K
2

x0

a2 þ 15a4K
4

x0

For 3a2
8x0
þ 5a4

8x0
a2 þ 15a4K

2

2x0

� �
a2 � l0, there exists an interval

r�0 � r0 � rþ0 in which three real and positive solutions a of

Eq. (20) exist. In the limit 3a2
8x0
þ 5a4

8x0
a2 þ 15a4K

2

2x0

� �
a2 ! l0, this

interval shrinks to the point r0 ¼ Z. The critical force ampli-
tude obtained from Eq. (20) is the solution of the following
equation

K10 ¼ 2l2
0x

2
0

10a3
4

�3a2�60a4K
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3a2þ60a4K

2Þ2þ160a4l0x0

q� �
ð22Þ

where K ¼ fcrit
x2
0
�X2.

For f � fcrit there is only one solution while for f � fcrit there

are three. The peak amplitude of the free oscillation term is
given by

ap ¼
ja4jK5

x0l0

: ð23Þ

which is also inversely proportional to l0. Increasing l0 can
diminish the value of ap.
se of nonlinear controlled system under an external excitation via time
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The stability of the steady state super-harmonic resonance
response is determined by the eigenvalues of the corresponding
Jacobian matrix, which are the roots of

k2 þ 2l0kþ C1 ¼ 0: ð24Þ

where

C1 ¼ l2
0 þ r2

0 þ
27a2

2

64x2
0

a4 þ 9a2
2K

2

2x2
0

a2 þ 15a2a4

16x2
0

a6 þ 125a2
4

256x2
0

a8

� 3a2r0

2x0

a2 � 15a4r0

8x0

a4 þ 9a2
2K

4

x2
0

þ 45a2a4K
2

2x2
0

a4

þ 225a2a4K
4

2x2
0

a2 þ 90a2a4K
6

x2
0

þ 75a2
4K

2

4x2
0

a6 þ 225a2
4K

8

x2
0

þ 1575a2
4K

4

8x2
0

a4 þ 450a2
4K

6

x2
0

a2 � 30a4r0K
2

x0

a2 � 6a2r0K
2

x0

� 30a4r0K
4

x0

:

The steady state motions are stable only when the two inequal-
ities l0 0 and C1 0 simultaneously hold, and are otherwise

unstable. Against the second inequality would imply the exis-
tence of an eigenvalue having a positive real part. Replacing
the second inequality by equality yields the critical parameters

corresponding to saddle-node bifurcation. The suitable choice
of the feedback gains and time-delays can improve the control
performance. Moreover, the occurrence of saddle-node bifur-

cation, the jump and hysteresis phenomena can be delayed
or eliminated.
2.3. Subharmonic resonance

Periodically forced, nonlinear oscillators often show a strong
response when driven near a rational multiple of the natural
frequency of the linearized system: Such occurrences are
known as subharmonic resonances. In these systems, at these

resonances, nonlinearities conspire to shift the response from
the driving frequency to (near) the natural frequency of the lin-
earized system. In the case of subharmonic resonance, it is as-

sumed that K = 2f and X = 3x + er. The first order
approximation for the steady state subharmonic resonance re-
sponse is given by

x ¼ a cos
1

3
ðXt� cÞ

� �
þ 2fðx2

0 � X2Þ�1 cosðXtÞ þOðeÞ; ð25Þ

where c = rT1 � 3b(T1) . The amplitude a and phase c
are governed by the following polar form of modulation

equations

a0 ¼ �l0a�
3a2K
4x0

a2 sinðcÞ � 15a4 K3

2x0

a2 sinðcÞ � 5a4K
4x0

a4 sinðcÞ;

ac0 ¼ r0 �
9a2K

2

x0

� 45a4K
4

x0

� �
a� 9a2

8x0

a3 � 45a4K
2

2x0

a3

� 15a4

16x0

a5 � 9a2K
4x0

a2 cosðcÞ:� 45a4K
3

2x0

a2 cosðcÞ

� 15a4K
4x0

a4 cosðcÞ ð26Þ

where K ¼ fðx2
0 � X2Þ�1: The steady state response corre-

sponds to the solutions of
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� l0a�
3a2K
4x0

a2 sinðcÞ � 15a4K
3

2x0

a2 sinðcÞ � 5a4K
4x0

a4 sinðcÞ ¼ 0;

� r0 �
9a2K

2

x0

� 45a4K
4

x0

� �
a� 9a2

8x0

a3 � 45a4K
2

2x0

a3 � 15a4

16x0

a5

� 9a2K
4x0

a2 cosðcÞ � 45a4K
3

2x0

a2 cosðcÞ � 15a4K
4x0

a4 cosðcÞ ¼ 0:

ð27Þ

Eliminating c from these equations, one has the frequency–
response equation

9l2
0þ r0�

9a2K
2

x0

�45a4K
4

x0

� 9a2

8x0

a2�45a4K
2

2x0

a2� 15a4

16x0

a4
� �2

" #
a2

¼ 9a2K
4x0

þ45a4K
3

2x0

þ15a4K
4x0

a2
� �2

a4:

ð28Þ

Eq. (28) shows that there are two possibilities: either a trivial
solution a ¼ 0, or non-trivial solutions when a–0, which are

given by

9l2
0þ r0�

9a2K
2

x0

�45a4K
4

x0

� 9a2

8x0

a2�45a4K
2

2x0

a2� 15a4

16x0

a4
� �2

" #

¼ 9a2K
4x0

þ45a4K
3

2x0

þ15a4K
4x0

a2
� �2

a2:

ð29Þ

The steady state solutions of subharmonic resonance response

is determined by the eigenvalues of the characteristic equation,
which are the roots of

k2 þ 6ða2 þ 10a4K
2Þl0

3a2 þ 5a4ða2 þ 6K2Þ
kþ C2 ¼ 0: ð30Þ

where

C2¼
1

256ð3a2þ5a4ða2þ6K2ÞÞx2
0

ð324ða4�64K4Þa3
2

þ225ð3a8þ16a6K2�480a4K4�4608a2K6�11520K8Þa2a
2
4

þ375ða10þ18a8K2�96a6K4�576a4K6

�6912a2K8�13824K10Þa3
4

þ1440ða4þ16a2K2þ48K4Þa2a4r0x0

þ800ða6þ42a4K2þ144a2K4þ288K6Þa2
4r0x0

�2304a2l
2
0x

2
0�11520ða2þ2K2Þa4l

2
0x

2
0

�256a2r
2
0x

2
0�1280ða2þ2K2Þa4r

2
0x

2
0

þ36a2
2ð15ða6þ6a4K2�192a2K4�768K6Þa4þ128K2r0x0ÞÞ

If all of the eigenvalues have negative real parts, the corre-

sponding steady-state solution is stable. Otherwise, it is unsta-

ble. In other words, if the two inequalities 6ða2þ10a4K2Þl0
3a2þ5a4ða2þ6K2Þ � 0 and

C2 � 0 are satisfied at the same time then the corresponding

steady-state solution is stable. We note that there is no jump
phenomenon in this case. Also, although the frequency of
the excitation is three times the natural frequency of the sys-

tem, the response is quite large. It is noted that if the feedback
control is appropriately implemented, the system will reduce
the regions of subharmonic resonance.

Based on the foregoing discussion, it can be concluded that
the appropriate choice of time-delays can improve the control
performance. A certain combination of l0 and r0 can delay or
se of nonlinear controlled system under an external excitation via time
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eliminate the occurrence of saddle-node bifurcation in the pri-
mary and superharmonic resonance responses. Moreover, re-
gions of subharmonic resonance shrink in the controlled

system by a suitable feedback control. Whenever numerical
simulations are performed, the values for the system parame-
ters are chosen as follows: a1 = 0.5, a2 = 1.0, a3 = 1.0,

a4 = 0.05, x0 = 5.0, l = 0.05, f= 0.3, dm = 0.135 and
dn = 0.015, unless otherwise specified. For simplicity in the
remaining part of this paper, we use the time-delay s2 in the

form s2 = s1 + d
Usually, l0 should have a larger value in order to improve

the control performance. Thence after some mathematical cal-
culations, it follows that there are two cases to be considered

depending on the quantities of the feedback gains:
Case I: If the feedback is implemented in such a way that

l � jdm=x0 þ dnj or l � jdm=x0 � dnj, the resulting l0 is al-

ways positive regardless of the values of the time-delays.
Case II: If the feedback gains and time-delays are chosen

under the condition l � jdm=x0 þ dnj or l � jdm=x0 � dnj,
the resulting l0 may be positive, zero, or negative, depending
on the different values of the time-delays. In practical engineer-
ing problem, the last two cases should be absolutely prohib-

ited. The time-delays should be carefully designed so that l0

is guaranteed to be always positive.

3. Numerical results and discussion

This section illustrates the effect of the feedback gains and
time-delays on the non-linear dynamical behavior of the
Figure 1 The critical force amplitude fcrit and the peak amplitude ap o

(a) and (b) curves are for d ¼ 0:0, curves are for d ¼ 3p=2x0 an

curves for s1 ¼ p=4x0 and curves for s1 ¼ p=2x0.
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controlled system under the primary resonance response. The
results will be presented in a number of figures:

In Fig. 1a, the critical force amplitude fcrit is plotted as a

function of the time-delay s1 for three different fixed d, while
the peak amplitude of the primary resonance response ap ver-
sus the time-delay s1 is illustrated in Fig. 1b. It is easily noted

that fcrit and ap vary significantly as the time-delay s1 increases.
If, unfortunately, the time-delay is not appropriately selected,
a smaller l0 is acquired. Subsequently, fcrit reaches a smaller

value too, while ap attains a larger value. This leads to a poor
control performance. For the case of two distinct time-delays
in feedback control, the time-delay s1 should be implemented
in the region s1 p p/x0 � 0.628. Thus, a larger fcrit and a smal-

ler ap can be obtained. For three different fixed time-
delays s1 = 0.0, s1 = p/4x0 and s1 = p/2x0, the correspond-
ing fcrit and ap are plotted in Fig. 1c and d, respectively, as

functions of the difference of two time-delays d. It is easy to
see that when s1 = p/2x0, the critical force amplitude fcrit is
larger than any other value of the time-delay s1 for a fixed d,
while ap has a smaller value. Furthermore, fcrit is larger while
ap is smaller in d � p=x0 than in d � p=x0. Thus, the differ-
ence of two time-delays d should be implemented in the region

d � p=x0 for the purpose of optimal control. The frequency–
response curves (bifurcation curves) for the primary resonance
response are depicted in Fig. 2 for three sets of the time-delays.
The response curves have an unstable portion for the time-

delays s1 ¼ 0:0, d ¼ 0:0 and s1 ¼ 0:0, d ¼ p=2x0, which corre-
spond to the cases of no time-delays and of only one derivative
feedback time-delay in the feedback control. In contrast, for
f the primary resonance response as a function of the time-delays :

d curves are for d ¼ p=2x0; (c) and (d) curves for s1 ¼ 0:0,

se of nonlinear controlled system under an external excitation via time
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Figure 3 The time histories; thick lines for the controlled system

at dm ¼ 0:135, dn ¼ 0:015, s1 ¼ p=2x0 and s2 ¼ p=x0, while thin

lines are for the uncontrolled system.

Figure 4 Frequency–response curves for primary resonance

corresponding to three sets of the time-delays under dm ¼ 0:27

and dn ¼ 0:03: (i) are curves for s1 ¼ 0:0 and d ¼ 0:0, (ii) are

curves fors1 ¼ 0:0 and d ¼ p=2x0 and (iii) are curves for

s1 ¼ p=4x0 and d ¼ p=2x0.

Figure 5 The time histories; thick lines for the controlled system

at dm ¼ 0:27, dn ¼ 0:03, s1 ¼ p=4x0 and s2 ¼ 3p=4x0, while thin

lines are for the uncontrolled system.

Figure 2 Frequency–response curves for primary resonance

corresponding to three sets of the time-delays: (i) are curves for

s1 ¼ 0:0 and d ¼ 0:0, (ii) are curves for s1 ¼ 0:0 and d ¼ p=2x0

and (iii) are curves for s1 ¼ p=2x0 and d ¼ p=2x0.
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two distinct time-delays s1 ¼ p=2x0 and d ¼ p=2x0, no unsta-
ble region exists in the system response curve. This indicates

that saddle-node bifurcation and jump phenomenon can be
Please cite this article in press as: Elnaggar, A.M., Khalil, K.M. The respon
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eliminated by suitable time-delays. Moreover, the peak ampli-
tude of the primary resonance response ap for s1 ¼ p=2x0 and
d ¼ p=2x0 is smaller than that for the other two cases. Fig. 3
shows the time histories of the uncontrolled system and con-

trolled system (1) under the excitation amplitudef ¼ 0:3, we
notice that the peak amplitude is reduced.

Fig. 4 also shows the frequency–response curves for the pri-

mary resonance response with dm ¼ 0:27 and dn ¼ 0:03, under
different time-delays. There exists an interval in which three
solutions exist, and jump phenomenon is presented for

s1 ¼ 0:0 and d ¼ 0:0 and s1 ¼ 0:0, s1 ¼ p=2x0. In contrast,
for s1 ¼ p=4x0, d ¼ p=2x0, there only exists one solution.
Jump and hysteresis phenomena do not exist. This simple
example also indicates that the saddle-node bifurcation and

jump phenomenon can be eliminated by appropriate selection
of the time-delays. Fig. 5 shows the time histories of the uncon-
trolled system and controlled system (1) under the excitation

amplitudef ¼ 0:3, s1 ¼ p=4x0 and d ¼ p=2x0, we notice that
the peak amplitude is reduced.

For the superharmonic resonance response, the suitable

choice of the time-delays and feedback gains can also improve
the control performance. Moreover, the occurrence of saddle-
node bifurcation, jump and hysteresis phenomena can be de-

layed or eliminated.
As an illustration, Figs. 6a and 6b show the variation of the

critical force amplitude fcrit and the peak amplitude of the free
oscillation term ap for f ¼ 29:0 with the time- delay s1, under
three different d, d ¼ 0:0, d ¼ p=2x0 and d ¼ 3p=2x0 respec-
tively. In contrast, Figs. 6c and 6d demonstrates the variation
of fcrit and ap with d for the three different time- delays

s1 ¼ 0:0, s1 ¼ p=4x0 and s1 ¼ p=2x0. Here, as in the case of
primary resonance, the optimal control performance can be
achieved by the selection of s1 � p=x0 and d � p=x0.

Fig. 7 shows the superharmonic frequency–response curves
for three different sets of the time-delays. There exists a region
of coexistence of the three solutions for s1 ¼ 0:0, d ¼ 0:0 and
s1 ¼ p=x0, d ¼ 3p=4x0. The bending of the frequency–re-

sponse curves is responsible for a jump phenomenon. The va-
lue of the detuning parameter r for saddle-node bifurcation is
larger for s1 ¼ p=x0, d ¼ 3p=4x0 than that for s1 ¼ 0:0,
d ¼ 0:0. This indicates that the occurrence of saddle-node
bifurcation and jump phenomenon can be delayed by certain
values of the time-delays. For s1 ¼ p=4x0 and d ¼ p=2x0,

there is no jump and hysteresis phenomena. This again
se of nonlinear controlled system under an external excitation via time
nces (2014), http://dx.doi.org/10.1016/j.jksues.2014.01.003
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Figure 6 The critical force amplitude fcrit for the superharmonic resonance response of order 5 and the peak amplitude of the free

oscillation term ap as a function of the time-delays: (a) and (b) curves are for d ¼ 0:0, curves are for d ¼ 3p=2x0 and curves are

for d ¼ p=2x0; (c) and (d) curves for s1 ¼ 0:0, curves for s1 ¼ p=4x0 and curves for s1 ¼ p=2x0.

Figure 7 Superharmonic Frequency–response curves corre-

sponding to three sets of the time-delays under dm ¼ 0:27 and

dn ¼ 0:03: (i) are curves for s1 ¼ 0:0 and d ¼ 0:0, (ii) are curves for

s1 ¼ p=x0 and d ¼ 3p=4x0 and (iii) are curves for s1 ¼ p=4x0 and

d ¼ p=2x0.

Figure 8 Subharmonic Frequency–response curves for the

uncontrolled system (i) and the controlled system (ii) for

(s1 ¼ p=4x0, d ¼ p=4x0) corresponding to the excitation ampli-

tude f ¼ 35:0 and under the feedback gains dm ¼ 0:135 and

dn ¼ 0:015.
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suggests that saddle node bifurcation and jump phenomenon
can be eliminated by certain values of the time-delays. Thus,

the control performance can be enhanced by the optimal selec-
tion of the feedback gains and time-delays.

Frequency–response Eq. (29) is a nonlinear algebraic equa-

tion in the amplitude a. This equation and stability condition
(30) are solved numerically by the Software of Mathematica.
The numerical results are plotted in Fig. 8. This figure shows
the frequency–response curves for subharmonic oscillations
Please cite this article in press as: Elnaggar, A.M., Khalil, K.M. The respon
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of order one-three. The frequency–response curves of non-triv-
ial solutions are multi-valued and consist of two branches: one

is stable and the other is unstable, also the branches of the re-
sponse curves are bent to the right.

For the subharmonic resonance response, the time-delays

can change the regime for the occurrence of subharmonic res-
onance. Fig. 9 shows the regions where subharmonic response
exists for the three different sets of time-delays. It is noted that
the regions for the existence of subharmonic responses are
se of nonlinear controlled system under an external excitation via time
nces (2014), http://dx.doi.org/10.1016/j.jksues.2014.01.003
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Figure 9 Regions where subharmonic responses exist for three

sets of the time- delays under dm ¼ 0:135 and dn ¼ 0:015:

curves are for s1 ¼ 0:0 and d ¼ 0:0 , curves are fors1 ¼ p=4x0

and d ¼ 3p=2x0, and curves are for s1 ¼ p=4x0 and

d ¼ p=4x0.
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different. When no time-delays are implemented in the feed-
back control (i.e., s1 ¼ 0:0, d ¼ 0:0), the region is the largest

one. For a fixed s1 ¼ p=4x0, the region gets smaller at
d ¼ 3p=2x0 and d ¼ p=4x0. When s1 ¼ p=4x0 and
d ¼ p=2x0, region of subharmonic resonance is reduced . This

indicates that there always exist certain regimes of the time-de-
lays where subharmonic response does not exist.

4. Conclusions

In this paper, we have presented an analysis of primary, super-
harmonic of order five, and subharmonic of order one-three

resonances for non-linear s.d.o.f. system with two distinct
time-delays under an external excitation. The method of multi-
ple scales is used to determine two first order ordinary differ-
ential equations which describe the modulation of the

amplitudes and the phases. Steady-state solutions and their
stabilities in each resonance are investigated. Numerical results
are obtained by using the Software of Mathematica, which

presented in a group of figures. The effect of the feedback gains
and time-delays on the non-linear response of the system is dis-
cussed and it is found that: an appropriate feedback can en-

hance the control performance. A suitable choice of the
feedback gains and time-delays can enlarge the critical force
amplitude, and reduce the peak amplitude of the response

(or peak amplitude of the free oscillation term) for the case
of primary resonance (superharmonic resonance). Further-
more, a proper feedback can eliminate saddle-node bifurca-
tion, thereby eliminating jump and hysteresis phenomena

taking place in the corresponding uncontrolled system. For
subharmonic resonance, an adequate feedback can reduce
the regions of subharmonic resonance response.
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